See below for our recent publications in peer-reviewed journals, books, and patents. Also, icons to the right filter publications by major topics. Public presentations and lectures can also be downloaded from here.
‡corresponding/senior author, * equal contribution
For a current list, click here.
Preprints under peer review
Rocamora F., Schoffelen S., Arnsdorf J., Toth E.A., Abdul Y., Cleveland T.E., Bjorn S.P., Wu Y.M., McElvaney N.G., Voldborg B.G.R., Fuerst T.R., Lewis N.E.‡ Glycoengineered recombinant alpha1-antitrypsin results in comparable in vitro and in vivo activities to human plasma-derived protein, bioRxiv (2024).
Li H*, Peralta A.G.*, Schoffelen S., Hansen A.H., Arnsdorf J., Schinn S., Skidmore J., Choudhury B., Paulchakrabarti M., Voldborg B.G., Chiang A.W.T., Lewis N.E.‡ LeGenD: determining N-glycoprofiles using an explainable AI-leveraged model with lectin profiling, bioRxiv (2024).
Masson H.O., Kuo C.C., Malm M., Lundqvist M., Sievertsson Å, Berling A., Tegel H., Hober S., Uhlén M., Grassi L., Hatton D., Rockberg J.‡, Lewis N.E.‡ Deciphering the determinants of recombinant protein yield across the human secretome, bioRxiv (2022).
2024
175. Hefzi H., Martínez-Monge I., Marin de Mas I., Cowie N.L., Gomez Toledo A., Noh S.M., la Cour Karottki K.J., Decker M., Arnsdorf J., Camacho-Zaragoza J.M., Kol S., Schoffelen S., Pristovšek N., Holmgaard A. H., Miguez A.A., Bjorn S.P., Brøndum K.K., Javidi E.M., Jensen K.L., Stangl L., Kreidl E., Kallehauge T.B., Ley D., Ménard P., Petersen H.M., Sukhova Z., Bauer A., Casanova E., Barron N., Malmström J., Nielsen L.K., Lee G.M., Kildegaard H.F., Voldborg B.G., Lewis N.E. Multiplex genome editing eliminates the Warburg Effect without impacting growth rate in mammalian cells, Nature Metabolism, accepted (2024).
174. Gopalakrishnan S., Johnson W., Valderrama-Gomez M.A., Icten E., Tat J., Lay F., Diep J., Gomez N., Stevens J., Schlegel F., Rolandi P., Kontoravdi C., Lewis N.E.‡ Multi-omic characterization of antibody-producing CHO cell lines elucidates metabolic reprogramming and nutrient uptake bottlenecks. Metabolic Engineering, 85:94-104 (2024). bioRxiv preprint.
173. Yom A., Chiang A.W.T., Lewis N.E.‡. A Boltzmann model predicts glycan structures from lectin binding. Analytical Chemistry, 96:8332–8341 (2024). doi: 10.1021/acs.analchem.3c04992
172. Park S., Choi D., Song J., Lakshmanan M., Richelle A., Yoon S., Kontoravdi C., Lewis N.E., Lee D. Driving towards digital biomanufacturing by CHO genome-scale models. Trends in Biotechnology, accepted (2024)
171. Gopalakrishnan S., Johnson W., Valderrama-Gomez M.A., Icten E., Tat J., Ingram M., Shek C.F., Chan P.K., Schlegel F., Rolandi P., Kontoravdi C., Lewis N.E. COSMIC-dFBA: A novel multi-scale hybrid framework for bioprocess modeling. Metabolic Engineering, 82:183-192 (2024).
167. Armingol E.‡, Baghdassarian H., Lewis N.E.‡ The diversification of methods for studying cell–cell interactions and communication. Nature Reviews Genetics, in press (2024).
166. Pong A., Mah C.K., Yeo G.W., Lewis N.E. Computational cell-cell interaction technologies drive mechanistic and biomarker discovery in the tumor microenvironment. Current Opinion in Biotechnology, 85:103048 (2024).
165. Masson H.O., Samoudi M., Robinson C.M., Kuo C.C., Weiss L., Shams-Ud-Doha K., Campos A.R., Tejwani V., Dahodwala H., Menard P., Voldborg B.G., Sharfstein S.T., Lewis N.E. Inferring secretory and metabolic pathway activity from omic data with secCellFie. Metabolic Engineering, 81, 273-285 (2024). bioRxiv preprint
163. Baghdassarian H., Lewis N.E. Resource Allocation in Mammalian Systems. Biotechnology Advances, 71, 108305 (2024). Preprint
2023
160. Kim S.H., Shin S.H., Baek M, Xiong K., Karottki K.J.L.C., Hefzi H., Grav L.M., Pedersen L.E., Kildegaard H.F., Lewis N.E., Lee J.S., Lee G.M. Identification of hyperosmotic stress-responsive genes in Chinese hamster ovary cells via genome-wide virus-free CRISPR/Cas9 screening. Metabolic Engineering, 80:66-77 (2023). doi:10.1016/j.ymben.2023.09.006
159. Aamodt CM, Lewis, NE. Single-cell A/B testing for cell-cell communication, Cell Systems, 14, 428-429 (2023).
158. Rocamora F., Peralta A.G., Shin S., Sorrentino J., Wu M., Toth E.A., Fuerst T.A., Lewis N.E. Glycosylation Shapes the Efficacy and Safety of Diverse Protein, Gene and Cell Therapies, Biotechnology Advances, 67, 108206 (2023). preprint
153. Liang C., Chiang A.W.T.‡, Lewis N.E.‡ GlycoMME, a Markov modeling platform for studying N-glycosylation biosynthesis from glycomics data, STAR Protocols, 4, 102244 (2023). doi: 10.1016/j.xpro.2023.102244.
152. Masson H.O., Karottki K.J.L.C., Tat J., Hefzi H.‡, Lewis N.E.‡ From Observational to Actionable: rethinking Omics in Biologics Production, Trends in Biotechnology, 41(9), 1127-1138 (2023). preprint doi: 10.1016/j.tibtech.2023.03.009
149. Ha TK*, Òdena A*, Karottki KJLC, Kim CL, Hefzi H, Lee GM, Kildegaard HF, Nielsen LK, Grav LM, Lewis NE. Enhancing CHO cell productivity through a dual selection system in glutamine free medium. Biotechnology & Bioengineering, 120 (4), 1159-1166. (2023). doi: 10.1002/bit.28318, Preprint
147. Kotidis P., Donini R., Arnsdorf J., Hansen A.H., Voldborg B.G.R., Chiang A.W.T., Haslam S., Betenbaugh M., Jimenez del Val I., Lewis N.E., Krambeck F, Kontoravdi C. CHOGlycoNET: Comprehensive Glycosylation Reaction Network for CHO cells, Metabolic Engineering, 76, 87-96 (2023). doi: 10.1016/j.ymben.2022.12.009
2022
136. Malm M.*, Kuo C.C.*, Barzadd M.M., Mebrahtu A., Wistbacka N., Razavi R., Volk A.L., Lundqvist M., Kotol D., Edfors F., Gräslund T., Chotteau V., Field R., Varley P.G., Roth R.G., Lewis N.E.‡, Hatton D., Rockberg J.‡ Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins. Metabolic Engineering, 72, 171-187 (2022). bioRxiv doi: 10.1101/2021.08.16.455786, DOI: 10.1016/j.ymben.2022.03.009, PMCID: PMC9189052
135. Thacker B.E., Thorne K.J., Cartwright C., Park J., Glass K., Chea A., Kellman B.P., Lewis N.E., Wang Z., Di Nardo A., Sharfstein S.T., Jeske W., Walenga J., Hogwood J., Gray E., Mulloy B., Esko J.D., Glass C.A. Multiplex genome editing of mammalian cells for producing recombinant heparin. Metabolic Engineering, 70, 155-165 (2022). doi: 10.1016/j.ymben.2022.01.002
133. Spahn, P.N.*, Zhang, X.*, Hu, Q., Hamaker, N., Hefzi, H., Li, S., Kuo, C.C., Huang, Y., Lee, J.C., Ly, P. , Lee, K.H.,‡ Lewis, N.E.‡ Restoration of deficient DNA Repair Genes Mitigates Genome Instability and Increases Productivity of Chinese Hamster Ovary Cells. Biotechnology & Bioengineering, 119, 963-982 (2022). doi: 10.1002/bit.28016, bioRxiv doi: 10.1101/2021.01.07.425558
131. Savizi I.S.P., Maghsoudi N., Motamedian E., Lewis N.E., Shojaosadati S.A. Valine feeding reduces ammonia production through rearrangement of metabolic fluxes in central carbon metabolism of CHO cells. Applied Microbiology and Biotechnology, 106, 1113–1126 (2022). doi:10.1007/s00253-021-11755-4, Authorea preprint
2021
126. Khaleghi M.K., Savizi I.S.P., Lewis N.E., Shojaosadati S.A. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnology Journal, 16:2100212. (2021). doi: 10.22541/au.162083622.21592768/v1
123. Xiong, K., Karottki, K.J.L.C., Hefzi, H., Li, S., Grav, L.M., Li, S., Spahn, P., Lee, J.S., Lee, G.M., Lewis, N.E., Kildegaard, H.F.,Pedersen, L.E. An optimized genome-wide, virus-free CRISPR screen for mammalian cells. Cell Reports Methods, 1:100062 (2021). bioRxiv doi: 10.1101/2020.05.19.103648
122. Shamie I.*, Duttke S.H.*, Karottki K.J.L.C., Han C.Z., Hansen A.H., Hefzi H., Xiong K., Li S., Roth S., Tao J., Lee G.M., Glass C.K., Kildegaard H.F., Benner C., Lewis N.E. A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. NAR Genomics and Bioinformatics, 3: lqab061 (2021). doi: 10.1093/nargab/lqab061
119. Samoudi M, Masson H, Kuo CC, Robinson C, Lewis NE. From omics to cellular mechanisms in mammalian cell factory development, Curr Opin in Chem Eng, 32: 100688 (2021). doi: 10.1016/j.coche.2021.100688
118. Chiang A.W.T.‡, Baghdassarian H.M., Kellman B.P., Bao B., Sorrentino J.T., Liang C., Kuo C.C., Masson H.O., Lewis N.E. Systems glycobiology for discovering drug targets, biomarkers, and rational designs for glyco-immunotherapy. Journal of Biomedical Science, 28:50 (2021). doi: 10.1186/s12929-021-00746-2, PMCID: PMC8218521
117. Savizi I.S.P., Motamedian E., Maghsoudi N., Lewis N.E., Jimenez del Val I., Shojaosadati S.A. An integrated modular framework for modeling the effect of ammonium on the sialylation process of monoclonal antibodies produced by CHO cells. Biotechnology Journal, 16:2100019 (2021). doi: 10.1002/biot.202100019
116. Weiss RJ*, Spahn PN*, Chiang AWT, Liu Q, Li J, Hamill KM, Rother S, Clausen TM, Hoeksema MA, Timm BM, Godula K, Glass CK, Tor Y, Gordts PLSM, Lewis NE‡, Esko JD‡. Genome-wide screens uncover KDM2B as a modifier of protein binding to heparan sulfate. Nature Chemical Biology, 17: 684–692 (2021). PMCID: PMC8218521
115. Karottki, K.J.L.C., Hefzi, H., Li, S., Pedersen, L.E., Spahn, P., Ruckerbauer, D., Bort, J.H., Thomas, A., Lee, J.S., Borth, N., Lee, G.M., Kildegaard, H.F.‡, Lewis, N.E.‡ A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes. Metabolic Engineering, 66:114-122 (2021). doi: 10.1016/j.ymben.2021.03.017. bioRxiv doi: 10.1101/2020.05.07.081604, PMCID: PMC8193919
114. Schinn S-M, Morrison C, Wei W, Zhang L, Lewis NE. Systematic evaluation of parameterization for genome-scale metabolic models of cultured mammalian cells. Metabolic Engineering, 66:21-30 (2021). bioRxiv doi:10.1101/2020.06.24.169938.
112. Schinn S.M., Morrison C., Wei W., Zhang L., Lewis N.E. A genome-scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures. Biotechnology & Bioengineering, 118:2118-2123 (2021). doi: 10.1002/bit.27714 bioRxiv doi: 10.1101/2020.09.02.279687
105. Samoudi, M.*, Kuo, C.C.*, Robinson, C.M.*, Shams-Ud-Doha, K., Schinn, S.M., Kol, S., Weiss, L., Bjorn, S.P., Voldborg, B.G., Campos, A.R., Lewis, N.E. In situ detection of protein interactions for recombinant therapeutic enzymes. Biotechnology & Bioengineering, 118 (2):890-904 (2021). doi: 10.1002/bit.27621, PMCID: PMC7855575
103. Fouladiha, H., Marashi, S.A., Li, S., Li, Z., Masson, H.O., Vaziri, B., Lewis, N.E. Systematically gap-filling the genome-scale model of CHO cells. Biotechnology Letters, 43:73–87 (2021). doi: 10.1007/s10529-020-03021-w, bioRxiv: 10.1101/2020.01.27.921296
2020
102. Martino, C.*, Kellman, B.P.*, Sandoval, D.R.*, Clausen, T.M., Marotz, C., Song, S.J., Wandro, S., Zaramela, L., Benítez, R.A.S., Zhu, Q., Armingol, E., Vázquez-Baeza, Y., McDonald, D., Sorrentino, J., Taylor, B., Belda-Ferre, P., Liang, C., Zhang, Y., Schifanella, L., Klatt, N.R., Havulinna, A.S., Jousilahti, P., Huang, S., Haiminen, N., Parida, L., Kim, H.C., Swafford, A.D., Zengler, K., Cheng, S., Inouye, M., Niiranen, T., Jain, M., Salomaa, V., Esko, J.D.‡, Lewis, N.E.‡, Knight, R.‡ Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. bioRxiv, (2020). DOI: 10.1101/2020.08.17.238444. News Coverage: Medical News
101. Lin, D., Yalamanchili, H., Zhang, X., Lewis, N.E., Alves, C.L., Groot, J., Arnsdorf, J., Bjørn, S.P., Wulff, T., Voldborg, B.G., Zhou, Y., Zhang, B. CHOmics: a web-based tool for multi-omics data analysis and interactive visualization in CHO cell lines. PLoS Computational Biology, 16: e1008498 (2020). doi: 10.1371/journal.pcbi.1008498
96. Kol, S., Ley, D., Wulff, T., Decker, M., Arnsdorf, J., Schoffelen, S., Hansen, A.H., Gutierrez, J.M., Chiang, A.W.T., Masson, H.O., Palsson, B.O., Voldborg, B.G., Pedersen, L.E., Kildegaard, H.F., Lee, G.M., Lewis, N.E. Multiplex secretome engineering enhances recombinant protein production and purity. Nature Communications, 11:1908 (2020). doi: 10.1038/s41467-020-15866-w. News coverage: Nature Bioengineering, UCSD Jacobs, Phys.org, Genetic Engineering and Biotechnology News, ScienceNews.dk
94. Szeliova, D., Ruckerbauer, D.E., Galleguillos, S.N., Petersen, L.B., Natter, K., Hanscho, M., Troyer, C. Causon, T., Schoeny, H., Christensen, H.B., Lee, D.Y., Lewis, N.E., Koellensperger, G., Hann, S., Nielsen, L., Borth, N., Zanghellini, J. What CHO is made of: Variations in the biomass composition of Chinese hamster ovary cell lines. Metabolic Engineering, 61:288-300 (2020). doi: 10.1016/j.ymben.2020.06.002
93. Weiss, R.J.*, Spahn, P.N.*, Chiang, A.W.T., Li, J., Kellman, B.P., Benner, C., Glass, C.K., Gordts, P.L.S.M., Lewis, N.E.‡, Esko, J.D.‡ ZNF263 is a novel transcriptional regulator of heparin and heparan sulfate biosynthesis, Proc. Nat. Acad. Sci. USA, 117:9311-9317 (2020). doi: 10.1073/pnas.1920880117 News coverage: UCSD Jacobs, Phys.org, Genetic Engineering and Biotechnology News, Biopharma Reporter
90. Fouladiha, H., Marashi, S.A., Torkashvand, F., Mahboudi, F., Lewis, N.E., Vaziri, B. A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production. Bioprocess and Biosystems Engineering, 43, 1381–1389 (2020). doi: 10.1007/s00449-020-02332-6
89. Liang, C.*, Chiang,. A.W.T.*, Hansen, A.H., Arnsdorf, J., Schoffelen, S., Sorrentino, J.T., Kellman, B.P., Bao, B., Voldborg, B.G., Lewis, N.E. A Markov model of glycosylation elucidates isozyme specificity and glycosyltransferase interactions for glycoengineering. Current Research in Biotechnology, 2:22-36 (2020). doi: 10.1016/j.crbiot.2020.01.001 News coverage: Bioanalysis Zone
88. Gutierrez, J.M.*, Feizi, A.*, Li, S., Kallehauge, T.B., Grav, L.M., Hefzi, H., Ley, D., Baycin Hizal, D., Betenbaugh, M.J., Voldborg, B., Kildegaard, H.F., Lee, G.M., Palsson, B.O., Nielsen, J., Lewis, N.E. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nature Communications, 11:68 (2020). doi: 10.1038/s41467-019-13867-y News coverage: ScienceNews.dk
86. Karottki, K.J.L.C., Hefzi, H., Xiong, K., Shamie, I., Hansen, A.H., Li, S., Li, S., Lee, J.S., Lee, G.M., Kildegaard, H.F.‡, Lewis, N.E.‡ Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnology & Bioengineering, 117, 593-598 (2020). doi: 10.1002/bit.27199
2019
82. Dahodwala, H., Kaushik, P., Tejwani, V., Kuo, C.C., Menard, P., Henry, M., Voldborg, B.G., Lewis, N.E., Meleady, P., Sharfstein, S.T. Increased mAb titers from amplification are associated with increased interaction of CREB1 with transgene promoter. Current Research in Biotechnology, 1:49-57 (2019). doi: 10.1016/j.crbiot.2019.09.001
81. Li, S.*, Richelle, A.*, Lewis, N.E. Enhancing product and bioprocess attributes using genome-scale models of CHO metabolism. Cell Culture Engineering: Recombinant Protein Production , p.73 (2019). ISBN: 978-3-527-34334-8
80. Cyrielle, C., Joshi, C., Lewis, N.E., Laetitia, M., Andersen, M.R.Adaption of Generic Metabolic Models to Specific Cell Lines for Improved Modeling of Biopharmaceutical Production and Prediction of Processes. Cell Culture Engineering: Recombinant Protein Production , p.127 (2019). ISBN: 978-3-527-34334-8
78. Chiang, A.W.T., Li, S., Kellman, B.P., Chattopadhyay, G., Zhang, Y., Kuo, C.C., Gutierrez, J.M., Ghazi, F., Schmeisser, H., Menard, P., Bjorn, S.P., Voldborg, B.G., Rosenberg, A.S., Puig, M.‡, Lewis, N.E.‡ Combating viral contaminants in CHO cells by engineering innate immunity. Scientific Reports, 9:8827 (2019). doi: 10.1038/s41598-019-45126-x
77. Li, S., Cha, S.W., Heffner, K., Baycin-Hizal, D., Bowen, M., Chaerkady, R., Cole, R., Tejwani, V., Kaushik, P., Henry, M., Meleady, P., Sharfstein, S., Betenbaugh, M.J., Bafna, V., Lewis, N.E. Proteogenomic annotation of the Chinese hamster reveals extensive novel translation events and endogenous retroviral elements. Journal of Proteome Research, 18:2433-2445 (2019). bioRxiv: 10.1101/468181 , Download genome and annotation here
75. Xiong, K.*, Marquart, K.F.*, Karottki, K.J.L.C.*, Li, S., Shamie, I., Lee, J.S., Signe Gerling, S., Yeo, N.C., Chavez, A., Lee, G.M., Lewis, N.E.‡, Kildegaard, H.F.‡, Reduced Apoptosis in Chinese Hamster Ovary Cells via Optimized CRISPR Interference. Biotechnology & Bioengineering, 116:1813-1819 (2019). doi: 10.1002/bit.26969
73. Pristovsek, N., Nallapareddy, S., Grav, L.M., Hefzi, H., Lewis, N.E., Rugbjerg, P., Hansen, H.G., Lee, G.M., Andersen, M.R., Kildegaard, H.F. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synthetic Biology, 8:758–774 (2019). doi: 10.1021/acssynbio.8b00453
72. Lytle, N., Ferguson, L.P., Rajbhandari, N., Gilroy, K., Fox, R.G., Robertson, N., Deshpande, A., Schürch, C., Hamilton, M., Robertson, N., Lin, W., Noel, P., Wartenberg, M, Zlobec, I., Eichmann, M., Galván, J.A., Karamitopoulou, E., Gilderman, T., Esparza, L.A., Shima, Y., Spahn, P., French, R., Lewis, N.E., Fisch, K.M., Sasik, R., Rosenthal, S.B., Kritzik, M., Von Hoff, D., Han, H., Ideker, T., Deshpande, A., Lowy, A.M., Adams, P., Reya, T. A multiscale map of the stem cell state in pancreatic adenocarcinoma. Cell, 177:572-586 (2019).
71. Lee, J.S., Kildegaard, H.F., Lewis, N.E., Lee, G.M. Deciphering Clonal Variation in Recombinant Mammalian Cell Lines. Trends in Biotechnology, 37, 931-942 (2019). doi: 10.1016/j.tibtech.2019.02.007
2018
66. Lee, J.S., Park, J.H., Ha, T.K., Samoudi, M., Lewis, N.E., Palsson, B.O., Kildegaard, H.F., Lee, G.M. Revealing key determinants of clonal variation in transgene expression in recombinant CHO cells using targeted genome editing, ACS Synthetic Biology, 7 (12):2867-2878 (2018). doi: 10.1021/acssynbio.8b00290
65. Brunk, E.*, Chang, R.L., Xia, J., Hefzi, H., Yurkovich, J., Kim, D., Buckmiller, E., Wang, H.H., Yang, C., Palsson, B.Ø., Church, G.M.‡, Lewis, N.E.*‡ Characterizing post-translational modifications in prokaryotic metabolism using a multi-scale workflow, Proc. Nat. Acad. Sci. USA, 115 (43): 11096-11101 (2018). bioRxiv doi: 10.1101/180646
64. Grav, L.M., Sergeeva, D., Lee, J.S., Marin de Mas, I., Lewis, N.E., Andersen, M.R., Nielsen, L.K., Lee, G.M., Kildegaard, H.F. Minimizing clonal variation during mammalian cell line engineering for improved systems biology data generation, ACS Synthetic Biology, 7 (9):2148–2159. doi:10.1021/acssynbio.8b00140
63. Yeo, N.C., Chavez, A., Lance-Byrne, A., Chan, Y., Menn, D., Milanova, D., Kuo, C.C., Guo, X., Sharma, S., Tung, A., Cecchi, R.J., Tuttle, M., Pradhan, S., Lim, E.T., Davidsohn, N., Ebrahimkhani, M.R., Collins, J.J., Lewis, N.E., Kiani, S., Church, G.M. An enhanced CRISPR repressor for targeted mammalian gene regulation, Nature Methods, 15:611-616 (2018) . doi:10.1038/s41592-018-0048-5
61. Rupp, O.*, MacDonald, M.L.*, Li, S.*, Dhiman, H.*, Polson, S., Griep, S., Heffner, K., Hernandez, I., Brinkrolf, K., Jadhav, V., Samoudi, M., Hou, H., Kingham, B., Goesmann, A., Betenbaugh, M.J. ‡, Lewis, N.E.‡, Borth, N.‡, Lee, K.‡ A reference genome of the Chinese hamster based on a hybrid assembly strategy, Biotechnology & Bioengineering, 115:2087-2100 (2018). doi: 10.1002/bit.26722
59. Kuo, C.C., Chiang, A.W.T., Shamie, I., Samoudi, M., Gutierrez, J.M., Lewis, N.E.‡ The emerging role of systems biology for engineering protein production in CHO cells. Current Opinion in Biotechnology, 51:64–69 (2018). doi: 10.1016/j.copbio.2017.11.015
57. Uhlen, M, Tegel, H, Sivertsson, Å, Kuo, C C, Gutierrez, J M, Lewis, N E, Forsström, B, Dannemeyer, M, Fagerberg, L, Rockberg, J, Malm, M, Vunk, H, Edfors, F, Hober, A, Sjöstedt, E, Mulder, J, Mardinoglu, A, Schwenk, J, Nilsson, P, Zwahlen, M, von Feilitzen, K, Lindskog, C, Ponten, F, Nielsen, J, Voldborg, B G, Palsson, B O, Volk, A L R, Lundqvist, M, Berling, A, Svensson, A S, Kanje, A, Enstedt, H, Afshari, D, Ekblad, S, Scheffel, J, Xu, L L, Mihai, R, Bremer, L, Westin, M, Muse, M, Mayr, L, Knight, S, Göpel, S, Davies, R, Varley, P, Hatton, D, Takanen, J O, Schiavone, L H, Hober, S. The human secretome – the proteins secreted from human cells. bioRxiv (2018). doi: 10.1101/465815
2017
56. Spahn, P.N., Bath, T., Weiss, R.J., Kim, J., Esko, J.D., Lewis, N.E.‡, Harismendy, O.‡. PinAPL-Py: a web-service for the analysis of CRISPR-Cas9 Screens. Scientific Reports, 15854 (2017). DOI: 10.1038/s41598-017-16193-9
54. Richelle, A., Lewis, N.E.. Improvements in protein production in mammalian cells from targeted metabolic engineering. Current Opinion in Systems Biology, 6:1-6 (2017). DOI: 10.1016/j.coisb.2017.05.019
52. Opdam, S.*, Richelle, A.*, Kellman, B., Li, S., Zielinski, D.C., Lewis, N.E.‡ A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Systems, 4:1-12 (2017). DOI:10.1016/j.cels.2017.01.010
51. Spahn, P.N., Hansen, A.H., Kol, S., Voldborg, B.G., Lewis, N.E.‡ Predictive glycoengineering of biosimilars using a Markov chain glycosylation model. Biotechnology Journal,12:1600489 (2017). DOI:10.1002/biot.201600489
50. Kallehauge, T.B., Li, S., Pedersen, L.E., Ha, T.K., Ley, D., Andersen, M.R., Kildegaard, H.F., Lee, G.M.‡, Lewis, N.E.‡ Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion. Scientific Reports, 7:40388 (2017). DOI:10.1038/srep40388
49. Shen, J.P., Zhao, D., Sasik, R., Luebeck, J., Birmingham, A., Bojorquez-Gomez, A., Licon, K., Klepper, K., Pekin, D., Beckett, A.N., Sanchez, K.S., Thomas, A., Kuo, C.C., Du, D., Roguev, A., Lewis, N.E., Chang, A.N., Kreisberg, J.F., Krogan, N., Qi, L., Ideker, T., Mali, P.M. Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nature Methods, 14:573-576 (2017). DOI:10.1038/nmeth.4225
48. van Wijk, X.M., Döhrmann, S., Hallström, B.M., Li, S., Voldborg, B.G., Meng, B.X., McKee, K.K., van Kuppevelt, T.H., Yurchenco, P.D., Palsson, B.O., Lewis, N.E., Nizet, V., Esko, J.D.Whole Genome Sequencing of Invasion-Resistant Cells Identifies Laminin a2 as a Host Factor For Bacterial Invasion. mBio, 8:e02128-16 (2017). DOI:10.1128/mBio.02128-16
2016
45. Hefzi, H.*, Ang, K.S.*, Hanscho, M.*, Bordbar, A., Ruckerbauer, D., Lakshmanan, M., Orellana, C.A., Baycin-Hizal, D., Huang, H., Ley, D., Martínez, V.S., Kyriakopoulos, S., Jiménez, N.E., Zielinski, D.C., Quek, L.E., Wulff, T., Arnsdorf, J., Li, S., Lee, J.S., Paglia, G., Loira, N., Spahn, P.N., Pedersen, L.E., Gutierrez, J.M., King, Z.A., Lund, A.M., Nagarajan, H., Thomas, A., Abdel-Haleem, A.M., Zanghellini, J., Kildegaard, H.F., Voldborg, B.G., Gerdtzen, Z.P., Betenbaugh, M.J., Palsson, B.O., Andersen, M.R., Nielsen, L.K., Borth, N.‡, Lee, D.Y.‡, Lewis, N.E.‡ A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Systems, 3, 434-443 (2016). DOI:10.1016/j.cels.2016.10.020, News coverage: phys.org, UCSD Health Sciences, Nordic Life Science News, Novo Nordisk Fonden
44. Chiang, A.W.T., Li, S., Spahn, P.N., Richelle, A., Kuo, C.C., Samoudi, M., Lewis, N.E. Modulating carbohydrate-protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology. Current Opinion in Structural Biology, 10, 104–111 (2016). DOI: 10.1016/j.sbi.2016.08.008
41. Golabgir, A.*, Gutierrez, J.M.*, Hefzi, H., Li, S., Palsson, B.O., Herwig, C.‡, Lewis, N.E.‡ Quantitative feature extraction from the Chinese Hamster Ovary bioprocess bibliome using a novel meta-analysis workflow . Biotechnology Advances, 34(5):621–633 (2016). DOI:10.1016/j.biotechadv.2016.02.011 * equal contribution, listed alphabetically The CHO Bibliome website
39. Spahn, P.N., Hansen, A.H., Hansen, H.G., Arnsdorf, J., Kildegaard, H.F., Lewis, N.E.‡ A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering. Metabolic Engineering, 33: 52–66 (2016). DOI:10.1016/j.ymben.2015.10.007
2015
36. Kumar, A., Baycin-Hizal, D., Wolozny, D., Pedersen, L.E., Lewis, N.E., Heffner, K., Chaerkady, R., Cole, R.N., Shiloach, J., Zhang, H., Bowen, M.A., Betenbaugh, M.J. Elucidation of the CHO Super-Ome (CHO-SO) by ProteoInfomatics. Journal of Proteome Research, 14 (11), pp 4687–4703 (2015). DOI: 10.1021/acs.jproteome.5b00588
33. Gutierrez, J.M., Lewis, N.E.‡ Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnology Journal, 10:939–949 (2015). DOI: 10.1002/biot.201400647
31. Lee, J.S., Grav, L.M., Lewis, N.E., Kildegaard, H.F. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology Journal, 10:979–994 (2015). DOI: 10.1002/biot.201500082.
2014
30. Busskamp, V.*, Lewis, N.E.*, Guye, P.*, Ng, A.H.M., Shipman, S.L., Byrne, S.M., Sanjana, N.E., Murn, J., Li, Y., Li, S., Stadler, M., Weiss, R., Church, G.M. Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 10:760 (2014). DOI: 10.15252/msb.20145508. * equal contribution
29. Spahn, P., Lewis, N.E.‡ Systems glycomics for glycoengineering. Current Opinion in Biotechnology, 30:218–224 (2014). DOI: 10.1016/j.copbio.2014.08.004
28. Hefzi, H., Lewis, N.E.‡ From random mutagenesis to systems biology in metabolic engineering of mammalian cells. Pharmaceutical Bioprocessing, 2:355-358 (2014). DOI: 10.4155/pbp.14.36
2013
23. Lewis, N.E.*, Liu, X.*, Li, Y.*, Nagarajan, H.*, Yerganian, G., O’Brien, E., Bordbar, A., Roth, A.M., Rosenbloom, J., Bian, C., Xie, M., Chen, W., Li, N., Baycin-Hizal, D., Latif, H., Forster, J., Betenbaugh, M.J., Famili, I., Xu, X., Wang, J., Palsson, B.O. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology. 31:759-65 (2013). doi: 10.1038/nbt.2624. * equal contribution
22. Kildegaard, H.F., Baycin-Hizal, D., Lewis, N.E., Betenbaugh, M.J. The Emerging CHO Systems Biology Era: Harnessing the ‘Omics Revolution for Biotechnology. Current Opinion in Biotechnology. S0958-1669(13):00021-9 (2013). doi: 10.1016/j.copbio.2013.02.007
2012
18. Baycin-Hizal, D., Tabb, D.L., Chaerkady, R., Chen, L., Lewis, N.E., Nagarajan, H., Sarkaria, V., Kumar, A., Wolozny, D., Colao, J., Jacobson, E., Tian, Y., O’Malley, R.N., Krag, S., Cole, R.N., Palsson, B.O., Zhang, H., Betenbaugh, M.J. Proteomic analysis of Chinese hamster ovary cells. Journal of Proteome Research. 11:5265-76 (2012).
2011
14. Xu, X.*, Nagarajan, H.*, Lewis, N.E.*, Pan, S.*,et al. The Genomic Sequence of the Chinese Hamster Ovary (CHO) K1 cell line. Nature Biotechnology, 29:735-41 (2011). * equal contribution
2010
4. Bar-Even, A., Noor, E., Lewis, N.E., Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl. Acad. Sci. USA., 107:8889-8894 (2010).
2009
2004
Patents and applications
11. Hefzi, H., Lewis, N.E., Karottki, K.J.L.C., Kildegaard, H. Asparaginase Based Selection System for Heterologous Protein Expression in Mammalian Cells. Patent pending.
10. Fuerst, T.R., Toth, E.A., Lewis, N.E., Voldborg, B.G., Chiang, W.T. Compositions and methods for producing glyco-modified viral antigens. Patent PCT/US2022/014338.
8. Martino, C., Kellman, B., Lewis, N.E., Knight, R., Sandoval, D., Esko, J., Mandel-Clausen, T. Application of microbial glycosidase as a therapeutic or anti-viral. Patent PCT/US2021/046144.
7. Lewis, N.E., Liang, C., Chiang, W.T. Methods of Designing Carbohydrates. Patent PCT/EP2020/082713.
6. Lewis, N.E., Spahn, P., Li, S., Hefzi, H., Shamie, I. Methods to Stabilize Mammalian Cells. Patent PCT/EP2020/078435.
5. Lewis, N.E., Chiang, W.T., Puig, M., Zhang, Y., Rosenberg, A. Method to Suppress Viral Infection of Mammalian Cells. Patent PCT/US2019/048361.
3. Hefzi, H., Lewis, N.E. Mammalian cells devoid of lactate dehydrogenase activity Patent US11242510B2.
2. Spahn, P., Lewis, N.E. Systems and methods for predicting glycosylation on proteins. WO Patent 2016187341 A1.
1. Herrgard, M. J., Pedersen, L.E., Lewis, N.E., Bruntse, A.B. Methods for modeling Chinese hamster ovary (CHO) cell metabolism. WO Patent WO2015010088-A1.